Gas compressor

A gas compressor is a mechanical device that increases the pressure of a gas by reducing its volume.

Compressors are similar to pumps: both increase the pressure on a fluid and both can transport the fluid through a pipe. As gases are compressible, the compressor also reduces the volume of a gas. Liquids are relatively incompressible, so the main action of a pump is to pressurize and transport liquids.

Contents

Types of compressors

The main types of gas compressors are illustrated and discussed below:

Compressor Types.png

Centrifugal compressors

Figure 1: A single stage centrifugal compressor

Centrifugal compressors use a rotating disk or impeller in a shaped housing to force the gas to the rim of the impeller, increasing the velocity of the gas. A diffuser (divergent duct) section converts the velocity energy to pressure energy. They are primarily used for continuous, stationary service in industries such as oil refineries, chemical and petrochemical plants and natural gas processing plants.[1][2][3] Their application can be from 100 horsepower (75 kW) to thousands of horsepower. With multiple staging, they can achieve extremely high output pressures greater than 10,000 psi (69 MPa).

Many large snowmaking operations (like ski resorts) use this type of compressor. They are also used in internal combustion engines as superchargers and turbochargers. Centrifugal compressors are used in small gas turbine engines or as the final compression stage of medium sized gas turbines. Sometimes the capacity of the compressors is written in NM3/hr. Here 'N' stands for normal temperature pressure (20oC and 1 atm ) for example 5500 NM3/hr.

Diagonal or mixed-flow compressors

Diagonal or mixed-flow compressors are similar to centrifugal compressors, but have a radial and axial velocity component at the exit from the rotor. The diffuser is often used to turn diagonal flow to

Axial-flow compressors

An animation of an axial compressor.

Axial-flow compressors are dynamic rotating compressors that use arrays of fan-like airfoils to progressively compress the working fluid. They are used where there is a requirement for a high flow rate or a compact design.

The arrays of airfoils are set in rows, usually as pairs: one rotating and one stationary. The rotating airfoils, also known as blades or rotors, accelerate the fluid. The stationary airfoils, also known as stators or vanes, decelerate and redirect the flow direction of the fluid, preparing it for the rotor blades of the next stage.[1] Axial compressors are almost always multi-staged, with the cross-sectional area of the gas passage diminishing along the compressor to maintain an optimum axial Mach number. Beyond about 5 stages or a 4:1 design pressure ratio, variable geometry is normally used to improve operation.

Axial compressors can have high efficiencies; around 90% polytropic at their design conditions. However, they are relatively expensive, requiring a large number of components, tight tolerances and high quality materials. Axial-flow compressors can be found in medium to large gas turbine engines, in natural gas pumping stations, and within certain chemical plants.

Reciprocating compressors

A motor-driven six-cylinder reciprocating compressor that can operate with two, four or six cylinders.

Reciprocating compressors use pistons driven by a crankshaft. They can be either stationary or portable, can be single or multi-staged, and can be driven by electric motors or internal combustion engines.[1][4][5] Small reciprocating compressors from 5 to 30 horsepower (hp) are commonly seen in automotive applications and are typically for intermittent duty. Larger reciprocating compressors well over 1,000 hp (750 kW) are commonly found in large industrial and petroleum applications. Discharge pressures can range from low pressure to very high pressure (>18000 psi or 180 MPa). In certain applications, such as air compression, multi-stage double-acting compressors are said to be the most efficient compressors available, and are typically larger, and more costly than comparable rotary units.[6] Another type of reciprocating compressor is the swash plate compressor, which uses pistons which are moved by a swash plate mounted on a shaft.

Household, home workshop, and smaller job site compressors are typically reciprocating compressors 1 1/2 hp or less with an attached receiver tank.

Rotary screw compressors

Diagram of a rotary screw compressor

Rotary screw compressors use two meshed rotating positive-displacement helical screws to force the gas into a smaller space.[1][7][8] These are usually used for continuous operation in commercial and industrial applications and may be either stationary or portable. Their application can be from 3 horsepower (2.2 kW) to over 1,200 horsepower (890 kW) and from low pressure to moderately high pressure (>1,200 psi or 8.3 MPa).

Rotary vane compressors

Rotary vane compressors consist of a rotor with a number of blades inserted in radial slots in the rotor. The rotor is mounted offset in a larger housing which can be circular or a more complex shape. As the rotor turns, blades slide in and out of the slots keeping contact with the outer wall of the housing.[1] Thus, a series of decreasing volumes is created by the rotating blades. Rotary Vane compressors are, with piston compressors one of the oldest of compressor technologies.

With suitable port connections, the devices may be either a compressor or a vacuum pump. They can be either stationary or portable, can be single or multi-staged, and can be driven by electric motors or internal combustion engines. Dry vane machines are used at relatively low pressures (e.g., 2 bar or 200 kPa; 29 psi) for bulk material movement whilst oil-injected machines have the necessary volumetric efficiency to achieve pressures up to about 13 bar (1,300 kPa; 190 psi) in a single stage. A rotary vane compressor is well suited to electric motor drive and is significantly quieter in operation than the equivalent piston compressor.

Rotary vane compressors can have mechanical efficiencies of about 90%.[9]

Scroll compressors

Mechanism of a scroll pump

A scroll compressor, also known as scroll pump and scroll vacuum pump, uses two interleaved spiral-like vanes to pump or compress fluids such as liquids and gases. The vane geometry may be involute, archimedean spiral, or hybrid curves.[10][11][12] They operate more smoothly, quietly, and reliably than other types of compressors in the lower volume range

Often, one of the scrolls is fixed, while the other orbits eccentrically without rotating, thereby trapping and pumping or compressing pockets of fluid or gas between the scrolls.

This type of compressor was used as the supercharger on Volkswagen G60 and G40 engines in the early 1990s.

Diaphragm compressors

A diaphragm compressor (also known as a membrane compressor) is a variant of the conventional reciprocating compressor. The compression of gas occurs by the movement of a flexible membrane, instead of an intake element. The back and forth movement of the membrane is driven by a rod and a crankshaft mechanism. Only the membrane and the compressor box come in contact with the gas being compressed.[1]

Diaphragm compressors are used for hydrogen and compressed natural gas (CNG) as well as in a number of other applications.

A three-stage diaphragm compressor

The photograph included in this section depicts a three-stage diaphragm compressor used to compress hydrogen gas to 6,000 psi (41 MPa) for use in a prototype compressed hydrogen and compressed natural gas (CNG) fueling station built in downtown Phoenix, Arizona by the Arizona Public Service company (an electric utilities company). Reciprocating compressors were used to compress the natural gas.

The prototype alternative fueling station was built in compliance with all of the prevailing safety, environmental and building codes in Phoenix to demonstrate that such fueling stations could be built in urban areas.

Temperature

Compression of a gas naturally increases its temperature.

In an attempt to model the compression of gas, there are two theoretical relationships between temperature and pressure in a volume of gas undergoing compression (isothermal and adiabatic). Although neither of them model the real world exactly, each can be useful for analysis. A third method (polytropic) measures real-world results.

In general, the energy required for adiabatic compression can be calculated as follows:


W = \int_{V_1}^{V_2} P dV = P_1 V_1^n \int_{V_1}^{V_2} V^{-n} dV
where


\frac { P_2 }{ P_1 }\ = ( \frac{ v_1 } { v_2 }\ ) ^ n

so


W = \frac {{P_1} {V_1^n}} {1-n}\ ( {V_2^{1-n}} - {V_1^{1-n}} )

with n taking different values for different compression processes (see below).


 T_2 = T_1 . {R_c}^{(k-1)/k} 
with T1 and T2 in degrees Rankine or kelvins, and k = ratio of specific heats (approximately 1.4 for air). Rc is the compression ratio; being the absolute outlet pressure divided by the absolute inlet pressure. The rise in air and temperature ratio means compression does not follow a simple pressure to volume ratio. This is less efficient, but quick. Adiabatic compression or expansion more closely model real life when a compressor has good insulation, a large gas volume, or a short time scale (i.e., a high power level). In practice there will always be a certain amount of heat flow out of the compressed gas. Thus, making a perfect adiabatic compressor would require perfect heat insulation of all parts of the machine. For example, even a bicycle tire pump's metal tube becomes hot as you compress the air to fill a tire. The relation between temperature and compression ratio described above means that the value of n for an adiabatic process is k (the ratio of specific heats).

For an isothermal process, n is 1, so the value of the work integral for an isothermal process is:


W = - {P_1} {v_1} ln ( \frac {P_2} {P_1}\ )

When evaluated, the isothermal work is found to be lower than the adiabatic work.

Staged compression

In the case of centrifugal compressors, commercial designs currently do not exceed a compression ratio of more than a 3.5 to 1 in any one stage (for a typical gas). Since compression generates heat, the compressed gas is to be cooled between stages making the compression less adiabatic and more isothermal. The inter-stage coolers typically result in some partial condensation that is removed in vapor-liquid separators.

In the case of small reciprocating compressors, the compressor flywheel may drive a cooling fan that directs ambient air across the intercooler of a two or more stage compressor.

Because rotary screw compressors can make use of cooling lubricant to remove the heat of compression, they very often exceed a 9 to 1 compression ratio. For instance, in a typical diving compressor the air is compressed in three stages. If each stage has a compression ratio of 7 to 1, the compressor can output 343 times atmospheric pressure (7 x 7 x 7 = 343 atmospheres). (343 atm/34.8 MPa; 5.04 ksi)

Prime movers

There are many options for the "prime mover" or motor which powers the compressor:

Applications

Gas compressors are used in various applications where either higher pressures or lower volumes of gas are needed:

See also

  • Cabin pressurization
  • Centrifugal fan
  • Compressed air
  • Electrochemical hydrogen compressor
  • Fire piston
  • Foil bearing
  • Gas compression heat pump
  • Guided rotor compressor
  • Hydrogen compressor
  • Ionic liquid piston compressor
  • Linear compressor
  • Liquid ring compressor
  • Hydride compressor
  • Natterer compressor
  • Pneumatic cylinder
  • Pneumatic tube
  • Roots blower (a lobe-type compressor)
  • Tuyau-Trompe
  • Vapor-compression refrigeration
  • Variable speed air compressor

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Perry, R.H. and Green, D.W. (Editors) (2007). Perry's Chemical Engineers' Handbook (8th ed.). McGraw Hill. ISBN 0-07-142294-3. 
  2. Dixon S.L. (1978). Fluid Mechanics, Thermodynamics of Turbomachinery (Third ed.). Pergamon Press. ISBN 0-08-022722-8. 
  3. Aungier, Ronald H. (2000). Centrifugal Compressors A Strategy for Aerodynamic design and Analysis. ASME Press. ISBN 0-7918-0093-8. 
  4. Bloch, H.P. and Hoefner, J.J. (1996). Reciprocating Compressors, Operation and Maintenance. Gulf Professional Publishing. ISBN 0-88415-525-0. 
  5. Reciprocating Compressor Basics Adam Davis, Noria Corporation, Machinery Lubrication, July 2005
  6. Introduction to Industrial Compressed Air Systems
  7. Screw Compressor Describes how screw compressors work and include photographs.
  8. Technical Centre Discusses oil-flooded screw compressors including a complete system flow diagram
  9. Mattei Compressors
  10. Tischer, J., Utter, R: “Scroll Machine Using Discharge Pressure For Axial Sealing,” U.S. Patent 4522575, 1985.
  11. Caillat, J., Weatherston, R., Bush, J: “Scroll-Type Machine With Axially Compliant Mounting,” U.S. Patent 4767293, 1988.
  12. Richardson, Jr., Hubert: “Scroll Compressor With Orbiting Scroll Member Biased By Oil Pressure,” U.S. Patent 4875838, 1989.
  13. Perry's Chemical Engineer's Handbook 8th edition Perry, Green, page 10-45 section 10-76
  14. Millar IL; Mouldey PG (2008). "Compressed breathing air – the potential for evil from within.". Diving and Hyperbaric Medicine. (South Pacific Underwater Medicine Society) 38: 145–51. http://archive.rubicon-foundation.org/7964. Retrieved 2009-02-28. 
  15. Harlow, V (2002). Oxygen Hacker's Companion. Airspeed Press. ISBN 0967887321.